Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38063736

RESUMO

Ti-TiN-(Y,Ti,Al)N coatings with a three-layer architecture (adhesive Ti layer, transition TiN layer, and wear-resistant (Y,Ti,Al)N layer) were studied. When depositing coatings, three arc current values of the yttrium cathode were used: 65, 85, and 105 A. The yttrium contents in the coatings were 30, 47, and 63 at. %, respectively. When turning 1045 steel, a coating with 30 at. % yttrium showed better wear resistance compared to a commercial (Ti,Cr,Al)N coating. The coating with 63 at. % yttrium did not show an increase in wear resistance compared to the uncoated sample. Nanolayers with a high yttrium content are oxidized more actively compared to nanolayers with a high titanium content. Phase analysis shows partial retention of the initial phases (Y,Ti,Al)N and (Ti,Y,Al)N during the formation of the Y2O3 oxide phase in the outer layers of the coating and the presence of only the initial phases in the deep layers. Coating nanolayers with high contents of aluminum and yttrium lose their original structure to a greater extent during oxidation compared to layers without aluminum.

2.
Elife ; 122023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803584

RESUMO

Glycan-binding proteins, so-called lectins, are exposed on mammalian cell surfaces and decipher the information encoded within glycans translating it into biochemical signal transduction pathways in the cell. These glycan-lectin communication pathways are complex and difficult to analyze. However, quantitative data with single-cell resolution provide means to disentangle the associated signaling cascades. We chose C-type lectin receptors (CTLs) expressed on immune cells as a model system to study their capacity to transmit information encoded in glycans of incoming particles. In particular, we used nuclear factor kappa-B-reporter cell lines expressing DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), macrophage C-type lectin (MCL), dectin-1, dectin-2, and macrophage-inducible C-type lectin (MINCLE), as well as TNFαR and TLR-1&2 in monocytic cell lines and compared their transmission of glycan-encoded information. All receptors transmit information with similar signaling capacity, except dectin-2. This lectin was identified to be less efficient in information transmission compared to the other CTLs, and even when the sensitivity of the dectin-2 pathway was enhanced by overexpression of its co-receptor FcRγ, its transmitted information was not. Next, we expanded our investigation toward the integration of multiple signal transduction pathways including synergistic lectins, which is crucial during pathogen recognition. We show how the signaling capacity of lectin receptors using a similar signal transduction pathway (dectin-1 and dectin-2) is being integrated by compromising between the lectins. In contrast, co-expression of MCL synergistically enhanced the dectin-2 signaling capacity, particularly at low-glycan stimulant concentration. By using dectin-2 and other lectins as examples, we demonstrate how signaling capacity of dectin-2 is modulated in the presence of other lectins, and therefore, the findings provide insight into how immune cells translate glycan information using multivalent interactions.


Assuntos
Lectinas Tipo C , Transdução de Sinais , Animais , Lectinas Tipo C/metabolismo , NF-kappa B/metabolismo , Monócitos/metabolismo , Polissacarídeos/metabolismo , Mamíferos/metabolismo
4.
Nat Commun ; 13(1): 2635, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550516

RESUMO

The actin-homologue FtsA is essential for E. coli cell division, as it links FtsZ filaments in the Z-ring to transmembrane proteins. FtsA is thought to initiate cell constriction by switching from an inactive polymeric to an active monomeric conformation, which recruits downstream proteins and stabilizes the Z-ring. However, direct biochemical evidence for this mechanism is missing. Here, we use reconstitution experiments and quantitative fluorescence microscopy to study divisome activation in vitro. By comparing wild-type FtsA with FtsA R286W, we find that this hyperactive mutant outperforms FtsA WT in replicating FtsZ treadmilling dynamics, FtsZ filament stabilization and recruitment of FtsN. We could attribute these differences to a faster exchange and denser packing of FtsA R286W below FtsZ filaments. Using FRET microscopy, we also find that FtsN binding promotes FtsA self-interaction. We propose that in the active divisome FtsA and FtsN exist as a dynamic copolymer that follows treadmilling filaments of FtsZ.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo
5.
Prehosp Disaster Med ; : 1-4, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35225195

RESUMO

The following article was cleared for publication following peer review and upon the Editor-in-Chief's decision. The manuscript is an addition to the global health literature. The manuscript reads uneven in the current English version, but the topic and concepts presented are of global interest and add to the disaster planning, response, and recovery knowledge base.Crisis situations (CS) are, unfortunately, happening in present days in each world side. And in this case, medical evacuation (ME) becomes necessary to save human lives. The presented study is regarding the description and analysis of the phases, peculiarities, and perspectives of ME organization and development. The study characterized the inter-sectoral method of the planning, and realization of crisis outcomes liquidation is provided. Four main ways of the realization of approaches that could guarantee the development of the ME system were found. Also has been identified the number of main problems which the ME system faces. Among them are lack of personnel/equipment in the medical crews; high time of transportation; the noise pollution and vibration in time of evacuation by air; the infection and exposure risk of the evacuation aircrews in the places of mass destruction weapons usage; the organizational and legislative problems of the foreign citizens' evacuation; and ME of the persons from the oil and gas production places.

6.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613557

RESUMO

A significant lack of donor organs restricts the opportunity to obtain tissue-specific scaffolds for tissue-engineering technologies. One of the acceptable solutions is the development of decellularization protocols for a human donor pancreas unsuitable for transplantation. A protocol of obtaining a biocompatible tissue-specific scaffold from decellularized fragments with pronounced human pancreas lipomatosis signs with preserved basic fibrillary proteins of a pancreatic tissue extracellular matrix was developed. The scaffold supports the adhesion and proliferation of human adipose derived stem cell (hADSCs) and prolongs the viability and insulin-producing function of pancreatic islets. Experiments conducted allow for the reliance on the prospects of using the donor pancreas unsuitable for transplantation in the technologies of tissue engineering and regenerative medicine, including the development of a tissue equivalent of a pancreas.


Assuntos
Ilhotas Pancreáticas , Pâncreas , Humanos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Matriz Extracelular/metabolismo , Hormônios Pancreáticos/metabolismo
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120273, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34425316

RESUMO

Amphibians are a natural source of a large number of peptides with a wide range of functional activities. Here, a complex of spectroscopic methods including NMR-, FTIR-, CD-, and UV-spectroscopy was applied to characterize the structure and functional activity of megin-1, a peptide isolated from amphibian skin. The three-dimensional structure of two forms of the peptide was determined using solution NMR spectroscopy. Thermodynamic characteristics of the process of peptide transformation from linear to cyclic form were obtained. Antibacterial and antimycotic properties of the peptide, as well as its protease inhibitory activities, were analyzed.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Espectroscopia de Ressonância Magnética , Proteínas Citotóxicas Formadoras de Poros
8.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361115

RESUMO

DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane.


Assuntos
Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Clostridioides difficile/metabolismo , Lipídeos de Membrana/metabolismo , Clostridioides difficile/crescimento & desenvolvimento , Transporte Proteico
9.
Elife ; 102021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33625355

RESUMO

Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as ß-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin-binding proteins (PBPs) are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here, we developed a novel Förster resonance energy transfer-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high-throughput screening for new antimicrobials.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano/biossíntese , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
10.
Data Brief ; 33: 106412, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33134443

RESUMO

Acholeplasma laidlawii is widespread hypermutable bacteria (class Mollicutes) capable of infecting humans, animals, plants, which is the main contaminant of cell cultures and vaccine preparations. The mechanisms of the development of antimicrobial resistance of this bacterium are associated with the secretion of extracellular vesicles, which can mediate the lateral transfer of antibiotic resistance determinants. We compared the genome profiles of ciprofloxacin-resistant A.laidlawii strains PG8r1 (MIC 10 µg/ml) and PG8r3 (MIC 10 µg/ml) selected under different in vitro conditions - when ciprofloxacin-sensitive (MIC 0.5 µg/ml) A.laidlawii PG8B strain was cultured at increasing concentrations of ciprofloxacin in a broth medium alone, and with vesicles derived from the ciprofloxacin-resistant (MIC 20 µg/ml) A.laidlawii PG8R10c-2 strain, respectively. Genome profiles of PG8c-3 (obtained from a single colony of the strain PG8B) and PG8R10c-2 were analyzed too. Patterns of the quinolone target genes (gyrA, gyrB, parE, parC) containing in extracellular vesicles of PG8c-3, PG8R10c-2, PG8r1 and PG8r3 were determined. Genome sequencing was performed on the NextSeq Illumina platform. Search and annotation of single nucleotide polymorphisms were performed using Samtools and SnpEff, respectively. We also compared cellular proteomes of PG8c-3, PG8r1 and PG8r3. The cellular proteome profiles of the A. laidlawii strains were determined by two-dimensional gel electrophoresis and MALDI-TOF/TOF MS. This work presents data on single nucleotide polymorphisms (SNPs) found in the genomes of the ciprofloxacin-resistant strains selected under different in vitro conditions and proteins that were differentially expressed in the cells of ciprofloxacin-resistant strains selected under different conditions in vitro.

11.
Data Brief ; 32: 106049, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32775567

RESUMO

To elucidate the regularities of adaptation of the representatives of class Mollicutes to antimicrobials and to identify the promising targets for eradication of mycoplasma infections and contaminations the comparative analysis of the molecular basis of bacterial resistance to antibiotics of different classes is needed. Previously, we presented the data on the whole-genome sequences of Acholeplasma laidlawii strains with different susceptibility to ciprofloxacin (GenBank: LXYB00000000.1), tetracycline (GenBank: NELO00000000.2) and melittin (GenBank: NELN00000000.2) as well as the data on cell and extracellular vesicle proteomes of melittin-resistant A. laidlawii strain [1]. The lists of extracellular vesicle proteins secreted by A. laidlawii strains with the increased resistance to ciprofloxacin (PG8R10) and tetracycline (PG8RTet) are presented here. The vesicle proteome profiles were obtained by 1D SDS-PAGE and liquid chromatography-mass spectrometry.

12.
Nat Microbiol ; 5(3): 407-417, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31959972

RESUMO

Most bacteria accomplish cell division with the help of a dynamic protein complex called the divisome, which spans the cell envelope in the plane of division. Assembly and activation of this machinery are coordinated by the tubulin-related GTPase FtsZ, which was found to form treadmilling filaments on supported bilayers in vitro1, as well as in live cells, in which filaments circle around the cell division site2,3. Treadmilling of FtsZ is thought to actively move proteins around the division septum, thereby distributing peptidoglycan synthesis and coordinating the inward growth of the septum to form the new poles of the daughter cells4. However, the molecular mechanisms underlying this function are largely unknown. Here, to study how FtsZ polymerization dynamics are coupled to downstream proteins, we reconstituted part of the bacterial cell division machinery using its purified components FtsZ, FtsA and truncated transmembrane proteins essential for cell division. We found that the membrane-bound cytosolic peptides of FtsN and FtsQ co-migrated with treadmilling FtsZ-FtsA filaments, but despite their directed collective behaviour, individual peptides showed random motion and transient confinement. Our work suggests that divisome proteins follow treadmilling FtsZ filaments by a diffusion-and-capture mechanism, which can give rise to a moving zone of signalling activity at the division site.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Difusão , Proteínas de Escherichia coli/metabolismo , Parede Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases , Proteínas de Membrana/metabolismo
13.
Open Access Maced J Med Sci ; 7(17): 2802-2806, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31844440

RESUMO

The article presents the results of a comparative analysis of different therapy regimens impact on the effectiveness of treatment of patients with early and late rheumatoid arthritis in steady-state. Data on ongoing basis anti-inflammatory therapy of rheumatoid arthritis and the treatment of associated conditions were obtained by continuous copying from case histories of hospital department patients. The observations lasted 12 months. The activity of rheumatoid arthritis before and after the treatment was determined by the DAS 28 (Disease Activity Score) index. The treatment results were evaluated as per the laboratory research and the DAS 28 index, including the counting of painful and swollen joints, erythrocyte sedimentation rate, and health assessment of the patient on a visual analogue scale.

14.
Matrix Biol ; 78-79: 47-59, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30633963

RESUMO

Cell-cell and cell-glycocalyx interactions under flow are important for the behaviour of circulating cells in blood and lymphatic vessels. However, such interactions are not well understood due in part to a lack of tools to study them in defined environments. Here, we develop a versatile in vitro platform for the study of cell-glycocalyx interactions in well-defined physical and chemical settings under flow. Our approach is demonstrated with the interaction between hyaluronan (HA, a key component of the endothelial glycocalyx) and its cell receptor CD44. We generate HA brushes in situ within a microfluidic device, and demonstrate the tuning of their physical (thickness and softness) and chemical (density of CD44 binding sites) properties using characterisation with reflection interference contrast microscopy (RICM) and application of polymer theory. We highlight the interactions of HA brushes with CD44-displaying beads and cells under flow. Observations of CD44+ beads on a HA brush with RICM enabled the 3-dimensional trajectories to be generated, and revealed interactions in the form of stop and go phases with reduced rolling velocity and reduced distance between the bead and the HA brush, compared to uncoated beads. Combined RICM and bright-field microscopy of CD44+ AKR1 T-lymphocytes revealed complementary information about the dynamics of cell rolling and cell morphology, and highlighted the formation of tethers and slings, as they interacted with a HA brush under flow. This platform can readily incorporate more complex models of the glycocalyx, and should permit the study of how mechanical and biochemical factors are orchestrated to enable highly selective blood cell-vessel wall interactions under flow.


Assuntos
Glicocálix/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Linfócitos T/citologia , Fenômenos Biomecânicos , Comunicação Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Receptores de Hialuronatos/genética , Técnicas Analíticas Microfluídicas/métodos , Microscopia de Interferência , Linfócitos T/metabolismo , Transfecção
15.
FEMS Microbiol Lett ; 365(18)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052940

RESUMO

This review is devoted to the mechanisms of antibiotic resistance in mollicutes (class Bacilli, subclass Mollicutes), the smallest self-replicating bacteria, that can cause diseases in plants, animals and humans, and also contaminate cell cultures and vaccine preparations. Research in this area has been mainly based on the ubiquitous mollicute and the main contaminant of cell cultures, Acholeplasma laidlawii. The omics technologies applied to this and other bacteria have yielded a complex picture of responses to antimicrobials, including their removal from the cell, the acquisition of antibiotic resistance genes and mutations that potentially allow global reprogramming of many cellular processes. This review provides a brief summary of well-known resistance mechanisms that have been demonstrated in several mollicutes species and, in more detail, novel mechanisms revealed in A. laidlawii, including the least explored vesicle-mediated transfer of short RNAs with a regulatory potency. We hope that this review highlights new avenues for further studies on antimicrobial resistance in these bacteria for both a basic science and an application perspective of infection control and management in clinical and research/production settings.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Tenericutes/efeitos dos fármacos , Pesquisa Biomédica/tendências
16.
Genome Announc ; 6(2)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29326221

RESUMO

Acholeplasma laidlawii is a well-suited model for studying the molecular basis for adapting mollicutes to environmental conditions. Here, we present the whole-genome sequences of two strains of A. laidlawii with increased resistance to tetracycline and melittin.

17.
Curr Opin Struct Biol ; 50: 65-74, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29275227

RESUMO

Conventional wisdom has it that proteins fold and assemble into definite structures, and that this defines their function. Glycosaminoglycans (GAGs) are different. In most cases the structures they form have a low degree of order, even when interacting with proteins. Here, we discuss how physical features common to all GAGs-hydrophilicity, charge, linearity and semi-flexibility-underpin the overall properties of GAG-rich matrices. By integrating soft matter physics concepts (e.g. polymer brushes and phase separation) with our molecular understanding of GAG-protein interactions, we can better comprehend how GAG-rich matrices assemble, what their properties are, and how they function. Taking perineuronal nets (PNNs)-a GAG-rich matrix enveloping neurons-as a relevant example, we propose that microphase separation determines the holey PNN anatomy that is pivotal to PNN functions.


Assuntos
Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Neurônios/metabolismo , Ligação Proteica
18.
Genome Announc ; 5(44)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097461

RESUMO

Acholeplasma laidlawii is a well-suited model for study of the molecular basis of the adaptation of mollicutes to environmental conditions. Here we present the whole-genome sequences of four strains of A. laidlawii with differential sensitivity to ciprofloxacin.

19.
J Biol Chem ; 289(44): 30481-30498, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25190808

RESUMO

Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking.


Assuntos
Proteína C-Reativa/química , Matriz Extracelular/fisiologia , Ácido Hialurônico/química , Componente Amiloide P Sérico/química , alfa-Globulinas/química , Animais , Moléculas de Adesão Celular/química , Linhagem Celular , Drosophila melanogaster , Matriz Extracelular/química , Feminino , Humanos , Folículo Ovariano/metabolismo , Ligação Proteica
20.
J Proteomics ; 110: 117-28, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25088052

RESUMO

Mycoplasmas (class Mollicutes), the smallest prokaryotes capable of self-replication, as well as Archaea, Gram-positive and Gram-negative bacteria constitutively produce extracellular vesicles (EVs). However, little is known regarding the content and functions of mycoplasma vesicles. Here, we present for the first time a proteomics-based characterisation of extracellular membrane vesicles from Acholeplasma laidlawii PG8. The ubiquitous mycoplasma is widespread in nature, found in humans, animals and plants, and is the causative agent of phytomycoplasmoses and the predominant contaminant of cell cultures. Taking a proteomics approach using LC-ESI-MS/MS, we identified 97 proteins. Analysis of the identified proteins indicated that A. laidlawii-derived EVs are enriched in virulence proteins that may play critical roles in mycoplasma-induced pathogenesis. Our data will help to elucidate the functions of mycoplasma-derived EVs and to develop effective methods to control infections and contaminations of cell cultures by mycoplasmas. In the present study, we have documented for the first time the proteins in EVs secreted by mycoplasma vesicular proteins identified in this study are likely involved in the adaptation of bacteria to stressors, survival in microbial communities and pathogen-host interactions. These findings suggest that the secretion of EVs is an evolutionally conserved and universal process that occurs in organisms from the simplest wall-less bacteria to complex organisms and indicate the necessity of developing new approaches to control infects.


Assuntos
Acholeplasma laidlawii/metabolismo , Proteínas de Bactérias/química , Proteoma/química , Vesículas Transportadoras/metabolismo , Fatores de Virulência/química , Sequência de Aminoácidos , Líquido Extracelular/metabolismo , Dados de Sequência Molecular , Mycoplasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...